
Math 222A Lecture 3 Notes

Daniel Raban

September 2, 2021

1 Well-Posedness for ODEs

1.1 Local existence and uniqueness for ODEs

Last time, we were studying a local posedness theorem for ODEs.

Theorem 1.1. Suppose F is locally Lipschitz; i.e. the restriction to any compact set is
Lipschitz. Then the ODE {

u′ = F (x, u)

u(0) = u0

has a unique local solution u ∈ C1([0, T ]).

Our main tool was Banach’s contraction principle.

Lemma 1.1 (Contraction principle). Let D ⊆ B be a closed subset of a Banach space,
and let N : D → D be a contraction, i.e. lip(N) < 1. Then N has a unique fixed point.

This principle is useful not just in the study of ODEs but in PDEs as well. Here is a
sketch of the proof.

Proof. We first prove uniqueness. Suppose x = N(x) and y = N(y). Then

‖x− y‖ = ‖N(x)−N(y)‖ ≤ L︸︷︷︸
<1

‖x− y‖.

This can only happen if ‖x− y‖ = 0, which implies x = y.
For existence, start with x0 ∈ D. Try to improve your guess successively by setting

x1 = N(x0), x2 = N(x1), and so on. To see that this is convergent, observe that

‖x2 − x1‖ = ‖N(x1)−N(x0)‖ ≤ L‖x1 − x0‖.

Iterating this gives
‖xn+1 − xn‖ ≤ Ln‖x1 − x0‖.
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This suggests we can think of xn as a sort of geometric series:

xn = xn − xn−1︸ ︷︷ ︸
≤Ln−1

+xn−1 − xn−2︸ ︷︷ ︸
≤Ln−2

+ · · ·+ x0.

A geometric series is convergent, so the sequence xn converges to some limit x. Since
xn+1 = N(xn) taking the limit of both sides gives x = N(x).

This method of contraction is very useful when studying nonlinear PDEs. Now we can
prove our ODE theorem:

Proof. We need N , B, and D. We obtain the map N by applying the fundamental theorem
of calculus1 to the ODE:

N(u)(x) = u0 +

∫ x

0
F (y, u(y)) dy.

Our Banach space will be C([0, T ]), where we need to figure out what is T . We want u to
be locally Lipschitz, so we will define D = {u ∈ C([0, T ]) : ‖u − u0‖C ≤ R}; we will also
need to figure out what is R.

To figure out T,R, we have a few conditions:

1. We need N maps D → D. For u ∈ B(u0, R),

|F (u)| ≤ |F (u0)|+ |F (u)− F (u0)|
≤ |F (u0)|+ LR

Suppose R ≤ 1. Then

|N(u)(x)− u0| ≤
∫ x

0
|F (y, u(y))| dy

1The idea is that the differential operator is unbounded, so you “lose” something when applying it. By
contrast, when you integrate, you “gain” something.
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Bound this above by the length of the integral times the size of the integrand.

≤ T · (|F (u0)|+ LR)︸ ︷︷ ︸
C

We can pick T � 1 is small enough such that

≤ R

2

2. N needs to be a contraction:

|N(u)−N(v)| ≤
∫ x

0
|F (y, u(y))− F (y, v(y))| dy

≤
∫ x

0
L|u(y)− v(y)| dy

≤ T · L · ‖u− v‖C .

Picking T small enough, we get

‖N(u)−N(v)‖ ≤ TL︸︷︷︸
<1

‖u− v‖.

By the contraction principle, there exists a unique solution u for the integral equation
in D. If u solves the integral equation, then the right hand side of the integral equation
is continuous. This implies that u ∈ C1 (as integrating a continuous function gives a C1
function).

The other issue is that our uniqueness statement is for functions in D. For uniqueness,
is there any other solution which exits B(u0, R)?

One solution is to find a T0 small enough such that u(T0) 6= v(T0) but ‖v− u0‖ ≤ R in
[0, T0] and apply the contraction principle in [0, T0]. This gives u = v in [0, T0].

Another solution is as follows. Denoting T0 as the exit time of the ball of radius R, if
v : [0, T0] → B(u0, R), our previous computation gives ‖v − u0‖ ≤ R/2. This is known as
a bootstrap argument.
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1.2 Maximal solutions to ODEs

Now that we have proven existence and uniqueness of local solutions, let us move to the
question of global solutions. Can we extend our local solution to global solutions?

This leads us to the idea of a maximal solution.

Definition 1.1. A maximal solution u is a solution to the differential equation that
cannot be extended to a larger domain.

In general, global solutions may not exist!

Example 1.1. Consider the equation{
u′ = u2

u(0) = u0 > 0.

By explicit computation, we can see u(t) = 1
T−t , where T = 1/u0.

How do we compute maximal solutions? Suppose u1 : [0, T1]→ Rn and u2 : [0, T2]→ Rn

are two solutions. Can we compare them? Suppose T1 ≤ T2. Then we can compare them
up to time T1.
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Can this picture occur? Choose T to be maximal such that u1 = u2 in [0, T ]. If
T < T1, then by local well-posedness, we must have u1 = u2 in [T, T + ε]. This contradicts
the maximality of the choice of T , so we must have T < T1. The conclusion is that as long
as both solutions exists, the must be equal on the interval they share. The set of solutions
is therefore ordered by inclusion, and a maximal solution exists.2

What can we say about maximal solutions? A maximal solution will look like u :
[0, T )→ Rn. The limit limt→T u(t) cannot exist, or else we could solve the equation again
from time T .

Proposition 1.1. If T <∞,
lim
t→T
|u(t)| =∞.

Proof. Suppose not. Then there exists a sequence tn → T such that |u(tn)| ≤ M . Start
solving from tn. We get a solution on the time interval [tn, tn + Tn], where Tn is given by
the local existence theorem. Since |u(tn)| ≤M , the theorem gives Tn = T0 not depending
on n. If tn + T0 > T , then we get a contradiction because our solution extends beyond
T .

Remark 1.1. This proposition says nothing about what will happen to global solutions.

1.3 Continuous dependence on data

Suppose u : [0, T ] → Rn is our reference solution with data u0, and we vary some v with
initial data v0. We want to know if v0 → u0, does that mean v → u in C([0, T ])?

Theorem 1.2.

(a) If |v0 − u0| is small enough, then v exists on [0, T ] and satisfies ‖v − u‖∞ ≤ 1.

2We do not need the axiom of choice in this case because the time intervals are totally ordered, so we
can just take the union.
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(b) If v0 → u0, then v → u in C([0, T ]).

Try to track |u− v|2:

d

dt
|u− v|2 = (u− v) · d

dt
(u− v)

= (u− v)(F (u)− F (v))

≤ |u− v| · L|u− v|
= L|u− v|2.

We also have |u − v|2(0) = |u0 − v0|2. Here, we have what might be called an ordinary
differential inequality for u − v. If we had equality, then we would get |u − v|2 ≤
|u0 − v0|2eLt. Otherwise, we hope to get |u− v|2 ≤ |u0 − v0|2eLt. This step is the simplest
form of what is known as Grönwall’s inequality. Next time, we will discuss this inequality.
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